Vibratory Characteristics of Pretwisted Cantilever Trapezoids of Unsymmetric Laminates

K. M. Liew* and C. W. Lim[†]
Nanyang Technological University, 2263 Singapore

Treated in this paper is a theoretical investigation on the vibratory characteristics of twisted unsymmetric laminates. An approach based on the global energy principle is developed to examine the effects of initial twist upon the vibration response of cantilevered unsymmetric laminates of a trapezoidal planform. It employs the Ritz extremum energy principle with a set of admissible pb-2 shape functions. These kinematically orientated pb-2 shape functions are composed of the product of 1) mathematically complete two-dimensional orthogonally generated polynomials and 2) a basic function to ensure satisfaction of the geometric boundary conditions. Numerical convergence of the eigenvalues is established by increasing the degree of polynomial of the shape functions. Results covering wide ranges of angles of twist and fiber orientation for 2-ply, 4-ply and 8-ply unsymmetric graphite/epoxy laminates are presented. Several findings with respect to these results are highlighted and conclusions are drawn. Finally, a set of vibration mode shapes illustrating the effects of aspect ratio, chord ratio, angles of twist, and fiber orientation is also included.

I. Introduction

IBRATION studies on turbomachinery blades have long been a topic of intensive research especially in compressor, turbine, and impeller design. Similar models can also be used to simulate larger rotating helicopter blades, windmills, and marine propellers. Early researchers depended very much on the use of beam theory in these studies. Undoubtedly the most comprehensive study on pretwisted cantilever blading is attributed to Carnegie, ^{1,2} Houbolt and Brooks, ³ and Montoya, ⁴ in which the beam modeling was extensively developed. Such modeling could be inaccurate in cases where the blade aspect ratio is small (less than two) or higher vibration modes are required. On the other hand, the theoretical analysis of two-dimensional blade problems was only confined to simple rectangular blade and small angle of twist. ⁵

The twisted plate theory with algebraic polynomials as the Ritz displacement function was employed by Bridle⁶ to analyze the vibration of thick plates and shells. The torsional vibration of pretwisted cantilevered plates was solved by Gupta and Rao⁷ who assumed pure rotation without axial warping. A collection of results for vibrations of pretwisted cantilever plates by various analytical and computational methods from various sources was also performed and reported by Leissa et al.,⁸ Keilb et al.,⁹ and MacBain et al.¹⁰ in a joint university/industry/government research collaboration. It was shown that various methods resulted in a wide disagreement in vibration frequencies for the isotropic pretwisted plates. Some experimental and three-dimensional solutions were also provided in these references.

Although there are many reports on vibrations of pretwisted cantilever plates, very few dealing with composite pretwisted plates can be found. A pioneering work by Chamis¹¹ investigated the vibrations of composite fan blades. Comparison with measured data was also performed. A recent paper by Qatu and Leissa¹² considered the free flexural vibrations of laminated pretwisted cantilever plates of rectangular planform (when untwisted). They used two-dimensional simple polynomials as the admissible function to

approximate the deflection. Although some interesting frequencies and mode shapes were published, these data are confined to 3-ply rectangular symmetric laminates. None are available, to the authors' knowledge, on the vibration analyses of unsymmetrically laminated pretwisted cantilever plate having trapezoidal planform (while untwisted). Thus, the primary purpose of the present paper is to investigate the vibratory characteristics of the cantilever pretwisted unsymmetric laminated trapezoidal plates.

The method of solution adopted in this study is a nondiscretization numerical algorithm based on the extremum energy principle, which incorporates the Ritz minimizing procedure with a set of orthogonally generated mathematically complete pb-2 shape functions. 13,14This energy approach overestimates the stiffness of the structure and, thus, induces upper bound eigenvalues with respect to the exact solutions. Convergence of frequency parameters is necessary to ensure adequate terms in the in-plane and transverse deflection functions. In generating the orthogonal polynomials, satisfaction of all of the geometric boundary conditions is always ensured through 1) the kinematically oriented basic function in the shape functions and 2) the recurrence formula in the orthogonalization procedure. Therefore, this method is extremely versatile to account for various types of boundary conditions, although only the cantilever plate is considered here. The difficulties of mesh generation and continuity conditions for the discretization methods are avoided. Furthermore, it does not require much computation memory and execution time since no domain discretization is needed. To establish the accuracy and reliability, a convergence and comparison study with available data from the literature is carried out.

To demonstrate the applicability and versatility of this method, numerical examples including the 2-ply, 4-ply, and 8-ply graphite/epoxy laminates are solved. A set of first known data covering wide ranges of angles of twist and fiber orientation is presented. The effects of chord ratios and aspect ratios are also examined.

II. Mathematical Formulation

Figure 1 shows a thin, fiber reinforced plate of trapezoidal planform with an angle of twist ψ . The cantilever composite plate is composed of unsymmetrically laminated plies with respect to the midplane as illustrated in Fig. 2. It is champed at edge x=0. The laminates have equal thicknesses with overall thickness h. The chord ratio is denoted by c_r and the angle of fiber orientation is β . The vibration frequencies and mode shapes of this laminated plate are to be determined. The deflections are decomposed into three orthogonal components u,v, and w parallel to the x, y, and z axes, respectively.

Received June 30, 1993; revision received March 20, 1995; accepted for publication March 31, 1995. Copyright © 1995 by K. M. Liew and C. W. Lim. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

^{*}Senior Lecturer, Division of Engineering Mechanics, School of Mechanical and Production Engineering.

[†]Research Assistant, Division of Engineering Mechanics, School of Mechanical and Production Engineering; currently Postdoctoral Fellow, Department of Civil Engineering, University of Queensland, 4072 Australia.

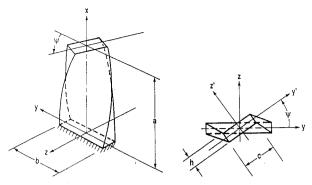


Fig. 1 Geometry of the pretwisted trapezoidal plate.

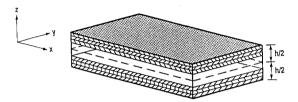


Fig. 2 Stacking sequence and fiber orientation of the unsymmetric laminates.

The strain energy \mathcal{U} of the laminated plate can be expressed in terms of the volume integral as

$$\mathcal{U} = \frac{1}{2} \iiint_{V} (\sigma_{x} \epsilon_{x} + \sigma_{y} \epsilon_{y} + \sigma_{xy} \gamma_{xy}) \, dV$$
 (1)

where the stress and strain of the kth laminate are related through transformed reduced stiffnesses $(\bar{Q}_{ij})_k$ in a matrix equation

$$\left\{ \begin{array}{l}
 \sigma_{x} \\
 \sigma_{y} \\
 \sigma_{xy}
 \end{array} \right\}_{h} = \begin{bmatrix}
 \bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\
 \bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\
 \bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66}
 \end{bmatrix}_{h} \begin{cases}
 \epsilon_{x} \\
 \epsilon_{y} \\
 \gamma_{xy}
 \end{cases}_{h} (2)$$

Let c and s denote $\cos \beta_k$ and $\sin \beta_k$, respectively, then $(\bar{Q}_{ij})_k$ can be expressed in terms of the stiffness constants $(Q_{ij})_k$ and the fiber orientation angle β_k ,

$$\bar{O}_{11a} = O_{11a}c^4 + 2(O_{12a} + 2O_{66a})s^2c^2 + O_{22a}s^4$$
 (3a)

$$\bar{Q}_{12b} = (Q_{11b} + Q_{22b} - 4Q_{66b})s^2c^2 + Q_{12b}(s^4 + c^4)$$
 (3b)

$$\bar{Q}_{22_k} = Q_{11_k} s^4 + 2(Q_{12_k} + 2Q_{66_k}) s^2 c^2 + Q_{22_k} c^4$$
 (3c)

$$\bar{Q}_{16\nu} = (Q_{11\nu} - Q_{12\nu} - 2Q_{66\nu})sc^3$$

$$+ (Q_{12_k} - Q_{22_k} + 2Q_{66_k})s^3c (3d)$$

$$\bar{Q}_{26_k} = (Q_{11_k} - Q_{12_k} - 2Q_{66_k})s^3c$$

$$+(Q_{12\nu}-Q_{22\nu}+2Q_{66\nu})sc^3$$
 (3e)

$$\bar{Q}_{66_k} = (Q_{11_k} - 2Q_{12_k} + Q_{22_k} - 2Q_{66_k})s^2c^2 + Q_{66_k}(s^4 + c^4)$$
(3f)

where

$$Q_{11_k} = \frac{E_{11_k}}{1 - \nu_{12}, \nu_{21}} \tag{4a}$$

$$Q_{12_k} = \frac{\nu_{12_k} E_{22_k}}{1 - \nu_{12_k} \nu_{21_k}} \tag{4b}$$

$$Q_{22_k} = \frac{E_{22_k}}{1 - v_{12}, v_{21}} \tag{4c}$$

$$Q_{66_{k}} = G_{12_{k}} \tag{4d}$$

$$\nu_{21_k} E_{11_k} = \nu_{12_k} E_{22_k} \tag{4e}$$

in which E_{11_k} and E_{22_k} are Young's moduli parallel and perpendicular to the fibers, respectively, and ν_{12_k} and ν_{21_k} are the corresponding Poisson ratios.

Substituting Eq. (2) into Eq. (1), the strain energy becomes

$$\mathcal{U} = \frac{1}{2} \iiint_{V} \left(\bar{Q}_{11} \epsilon_{x} \epsilon_{x} + 2 \bar{Q}_{12} \epsilon_{x} \epsilon_{y} + 2 \bar{Q}_{16} \epsilon_{x} \gamma_{xy} \right.$$

$$\left. + \bar{Q}_{22} \epsilon_{y} \epsilon_{y} + 2 \bar{Q}_{26} \epsilon_{y} \gamma_{xy} + \bar{Q}_{66} \gamma_{xy} \gamma_{xy} \right) dV \tag{5}$$

Using the following strain-displacement relationships 15:

$$\left\{ \begin{array}{l} \epsilon_{x} \\ \epsilon_{y} \\ \gamma_{xy} \end{array} \right\} = \left\{ \begin{array}{l} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{2w}{R_{xy}} \end{array} \right\} - z \left\{ \begin{array}{l} \frac{\partial^{2} w}{\partial x^{2}} \\ \frac{\partial^{2} w}{\partial y^{2}} \\ 2\frac{\partial^{2} w}{\partial x \partial y} \end{array} \right\}$$
(6)

the volume integral strain energy expression (5) can be reduced to surface integral over the domain of the plate planform as follows:

$$\mathcal{U} = \frac{1}{2} \iint_{A} \left\{ A_{11} \left(\frac{\partial u}{\partial x} \right)^{2} + 2A_{12} \left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial y} \right) + 2A_{16} \left(\frac{\partial u}{\partial x} \right) \right.$$

$$\times \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{2w}{R_{xy}} \right) + A_{22} \left(\frac{\partial u}{\partial y} \right)^{2}$$

$$+ 2A_{26} \left(\frac{\partial v}{\partial y} \right) \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{2w}{R_{xy}} \right) + A_{66} \left[\left(\frac{\partial u}{\partial y} \right)^{2} \right]$$

$$+ 2 \left(\frac{\partial u}{\partial y} \frac{\partial v}{\partial x} \right) + \left(\frac{\partial v}{\partial x} \right)^{2} + \left(\frac{4w}{R_{xy}} \right) \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{w}{R_{xy}} \right) \right]$$

$$- 2B_{11} \left(\frac{\partial u}{\partial x} \frac{\partial^{2}w}{\partial x^{2}} \right) - 2B_{12} \left(\frac{\partial u}{\partial x} \frac{\partial^{2}w}{\partial y^{2}} + \frac{\partial v}{\partial y} \frac{\partial^{2}w}{\partial x^{2}} \right)$$

$$- 2B_{22} \left(\frac{\partial v}{\partial y} \frac{\partial^{2}w}{\partial y^{2}} \right)$$

$$- 2B_{16} \left(\frac{\partial v}{\partial x} \frac{\partial^{2}w}{\partial x^{2}} + \frac{\partial u}{\partial y} \frac{\partial^{2}w}{\partial x^{2}} + 2\frac{\partial u}{\partial x} \frac{\partial^{2}w}{\partial x \partial y} + \frac{2w}{R_{xy}} \frac{\partial^{2}w}{\partial x^{2}} \right)$$

$$- 2B_{26} \left(\frac{\partial v}{\partial x} \frac{\partial^{2}w}{\partial y^{2}} + \frac{\partial u}{\partial y} \frac{\partial^{2}w}{\partial y^{2}} + 2\frac{\partial v}{\partial y} \frac{\partial^{2}w}{\partial x \partial y} + \frac{2w}{R_{xy}} \frac{\partial^{2}w}{\partial y^{2}} \right)$$

$$- 4B_{66} \left(\frac{\partial^{2}w}{\partial x \partial y} \right) \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} + \frac{2w}{R_{xy}} \right)$$

$$+ D_{11} \left(\frac{\partial^{2}w}{\partial x^{2}} \right)^{2} + 2D_{12} \left(\frac{\partial^{2}w}{\partial x^{2}} \frac{\partial^{2}w}{\partial y^{2}} \right)$$

$$+ 4D_{16} \left(\frac{\partial^{2}w}{\partial x^{2}} \frac{\partial^{2}w}{\partial x \partial y} \right) + D_{22} \left(\frac{\partial^{2}w}{\partial x^{2}} \right)^{2}$$

$$+ 4D_{26} \left(\frac{\partial^{2}w}{\partial y^{2}} \frac{\partial^{2}w}{\partial x \partial y} \right) + 4D_{66} \left(\frac{\partial^{2}w}{\partial x \partial y} \right)^{2} \right\} dA$$

$$(7)$$

where A_{ij} , B_{ij} , and D_{ij} are the laminate stiffness coefficients given by

$$A_{ij} = \sum_{k=1}^{n} (\bar{Q}_{ij})_k (h_k - h_{k-1}) \qquad (i, j = 1, 2, 6)$$
 (8a)

$$B_{ij} = \frac{1}{2} \sum_{k=1}^{n} (\bar{Q}_{ij})_k (h_k^2 - h_{k-1}^2) \qquad (i, j = 1, 2, 6)$$
 (8b)

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{n} (\bar{Q}_{ij})_k (h_k^3 - h_{k-1}^3) \qquad (i, j = 1, 2, 6)$$
 (8c)

and ψ is related to the radius of twist R_{xy} by

$$\tan \psi = -(a/R_{xy}) \tag{9}$$

The kinetic energy for free vibration is given by

$$\mathcal{T} = \frac{\rho}{2} \int \int_{A} \left[\left(\frac{\partial u}{\partial t} \right)^{2} + \left(\frac{\partial v}{\partial t} \right)^{2} + \left(\frac{\partial w}{\partial t} \right)^{2} \right] dA \qquad (10)$$

where ρ is the mass density per unit volume.

The deflection functions can be expressed in time periodic functions in the following forms:

$$u(x, y, t) = U(x, y)\sin \omega t \tag{11a}$$

$$v(x, y, t) = V(x, y) \sin \omega t \tag{11b}$$

$$w(x, y, t) = W(x, y) \sin \omega t \tag{11c}$$

where ω denotes the frequency of vibration.

The maximum strain energy U_{max} and kinetic energy T_{max} in a vibratory cycle can be derived by substituting Eqs. (11a–11c) into Eqs. (7) and (10).

The energy functional defined by the difference between the maximum strain and kinetic energies is

$$\Pi = \mathcal{U}_{\text{max}} - \mathcal{T}_{\text{max}} \tag{12}$$

which is to be minimized in accordance with the Ritz principle.

III. Method of Solution

Let a nondimensional coordinate system be

$$\xi = (x/a) \tag{13a}$$

$$\eta = (y/b) \tag{13b}$$

where a and b are the span and width of the plate planform as shown in Fig. 1. The in-plane and transverse deflection amplitude functions, $U(\xi, \eta)$, $V(\xi, \eta)$, and $W(\xi, \eta)$, can be approximated by a series of orthogonally generated two-dimensional polynomials of the forms

$$U(\xi,\eta) = \sum_{i=1}^{m} C_{ui}\phi_{ui}(\xi,\eta)$$
 (14a)

$$V(\xi, \eta) = \sum_{i=1}^{m} C_{vi} \phi_{vi}(\xi, \eta)$$
 (14b)

$$W(\xi, \eta) = \sum_{i=1}^{m} C_{wi} \phi_{wi}(\xi, \eta)$$
 (14c)

where C_{ui} , C_{vi} , and C_{wi} are the unknown coefficients and ϕ_{ui} , ϕ_{vi} , and ϕ_{wi} are the corresponding pb-2 shape functions. The later are sets of orthogonally generated two-dimensional polynomials to be discussed in due course.

By minimizing the energy functional in Eq. (12) with respect to each of the coefficients,

$$\frac{\partial \Pi}{\partial C_{\alpha i}} = 0;$$
 $\alpha = u, v \text{ and } w$ (15)

the following governing eigenvalue equation can be obtained:

$$(12K - \lambda^2 M)\{C\} = \{0\}$$
 (16)

where K is the stiffness matrix and M is the mass matrix expressed as follows:

$$K = \begin{bmatrix} [K_{uu}] & [K_{uv}] & [K_{uw}] \\ & [K_{vv}] & [K_{vw}] \\ \text{sym} & [K_{ww}] \end{bmatrix}$$
(17a)

$$\mathbf{M} = \begin{bmatrix} [M_{uu}] & [0] & [0] \\ & [M_{vv}] & [0] \\ \text{sym} & [M_{mn}] \end{bmatrix}$$
 (17b)

and the vector of unknown coefficients is

$$\{C\} = \begin{cases} \{C_{uj}\} \\ \{C_{vj}\} \\ \{C_{wj}\} \end{cases}$$
 (17c)

The elements in the stiffness and mass matrices are

$$K_{uuij} = \frac{b^2 A_{11}}{D_0} \mathcal{I}_{uiuj}^{1010} + \frac{ab A_{16}}{D_0}$$

$$\times \left(\mathcal{I}_{uiuj}^{0110} + \mathcal{I}_{uiuj}^{1001} \right) + \frac{a^2 A_{66}}{D_0} \mathcal{I}_{uiuj}^{0101}$$
(18a)

$$K_{uvij} = \frac{abA_{12}}{D_0} \mathcal{I}_{uivj}^{1001} + \frac{b^2 A_{16}}{D_0} \mathcal{I}_{uivj}^{1010} + \frac{a^2 A_{26}}{D_0} \mathcal{I}_{uivj}^{0101} + \frac{abA_{66}}{D_0} \mathcal{I}_{uivj}^{0110}$$
(18b)

$$K_{uwij} = \frac{2ab^2 A_{16}}{R_{xy} D_0} \mathcal{I}_{uiwj}^{1000} + \frac{2a^2 b A_{66}}{R_{xy} D_0} \mathcal{I}_{uiwj}^{0100} - \frac{b^2 B_{11}}{a D_0} \mathcal{I}_{uiwj}^{1020}$$
$$- \frac{a B_{12}}{D_0} \mathcal{I}_{uiwj}^{1002} - \frac{b B_{16}}{D_0} \left(\mathcal{I}_{uiwj}^{0120} + 2 \mathcal{I}_{uiwj}^{1011} \right)$$
$$- \frac{a^2 B_{26}}{b D_0} \mathcal{I}_{uiwj}^{0102} - \frac{2a B_{66}}{D_0} \mathcal{I}_{uiwj}^{0111}$$
(18c)

$$K_{vvij} = \frac{a^2 A_{22}}{D_0} \mathcal{I}_{vivj}^{0101} + \frac{ab A_{26}}{D_0}$$

$$\times \left(\mathcal{I}_{vivj}^{0110} + \mathcal{I}_{vivj}^{1001}\right) + \frac{b^2 A_{66}}{D_0} \mathcal{I}_{vivj}^{1010}$$

$$K_{vwij} = \frac{2a^2 b A_{26}}{R_{xy} D_0} \mathcal{I}_{viwj}^{0100} + \frac{2ab^2 A_{66}}{R_{xy} D_0} \mathcal{I}_{viwj}^{1000}$$
(18d)

$$-\frac{bB_{12}}{D_0}\mathcal{I}_{viwj}^{0120} - \frac{b^2B_{16}}{aD_0}\mathcal{I}_{viwj}^{1020} -\frac{a^2B_{22}}{bD_0}\mathcal{I}_{viwj}^{0102} - \frac{aB_{26}}{D_0}\left(\mathcal{I}_{viwj}^{1002} + 2\mathcal{I}_{viwj}^{0111}\right) - \frac{2bB_{66}}{D_0}\mathcal{I}_{viwj}^{1011}$$
(18e)

$$\begin{split} K_{wwij} &= \frac{4a^2b^2A_{66}}{R_{xy}^2D_0}\mathcal{I}_{wiwj}^{0000} - \frac{2b^2B_{16}}{R_{xy}D_0} \left(\mathcal{I}_{wiwj}^{2000} + \mathcal{I}_{wiwj}^{0020}\right) \\ &- \frac{2a^2B_{26}}{R_{xy}D_0} \left(\mathcal{I}_{wiwj}^{0200} + \mathcal{I}_{wiwj}^{0002}\right) - \frac{4abB_{66}}{R_{xy}D_0} \left(\mathcal{I}_{wiwj}^{1100} + \mathcal{I}_{wiwj}^{0011}\right) \\ &+ \frac{b^2D_{11}}{a^2D_0}\mathcal{I}_{wiwj}^{2020} + \frac{D_{12}}{D_0} \left(\mathcal{I}_{wiwj}^{0220} + \mathcal{I}_{wiwj}^{2002}\right) + \frac{2bD_{16}}{aD_0} \\ &\times \left(\mathcal{I}_{wiwj}^{1120} + \mathcal{I}_{wiwj}^{2011}\right) + \frac{a^2D_{22}}{b^2D_0}\mathcal{I}_{wiwj}^{0202} \\ &+ \frac{2aD_{26}}{bD_0} \left(\mathcal{I}_{wiwj}^{1102} + \mathcal{I}_{wiwj}^{0211}\right) + \frac{4D_{66}}{D_0}\mathcal{I}_{wiwj}^{1111} \end{split}$$

(18f)

$$M_{uuij} = \mathcal{I}_{uiui}^{0000} \tag{18g}$$

$$M_{vvij} = \mathcal{I}_{vivj}^{0000} \tag{18h}$$

$$M_{wwij} = \mathcal{I}_{wiwj}^{0000} \tag{18i}$$

$$\lambda = \omega a b \sqrt{\frac{\rho h}{D_0}} \tag{18j}$$

where

$$\mathcal{I}_{uiuj}^{defg} = \iint_{A} \frac{\partial^{d+e} \phi_{ui}(\xi, \eta)}{\partial \xi^{d} \partial \eta^{e}} \frac{\partial^{f+g} \phi_{uj}(\xi, \eta)}{\partial \xi^{f} \partial \eta^{g}} \, \mathrm{d}\xi \, \mathrm{d}\eta \tag{19a}$$

$$\mathcal{I}_{uivj}^{defg} = \iint_{\Lambda} \frac{\partial^{d+e} \phi_{ui}(\xi, \eta)}{\partial \xi^{d} \partial \eta^{e}} \frac{\partial^{f+g} \phi_{vj}(\xi, \eta)}{\partial \xi^{f} \partial \eta^{g}} \, \mathrm{d}\xi \, \mathrm{d}\eta \tag{19b}$$

$$\mathcal{I}_{uiwj}^{defg} = \int\!\!\int_{A} \frac{\partial^{d+e}\phi_{ui}(\xi,\eta)}{\partial \xi^{d}\partial \eta^{e}} \frac{\partial^{f+g}\phi_{wj}(\xi,\eta)}{\partial \xi^{f}\partial \eta^{g}} \,\mathrm{d}\xi \,\mathrm{d}\eta \tag{19c}$$

$$\mathcal{I}_{vivj}^{defg} = \iint_{A} \frac{\partial^{d+e} \phi_{vi}(\xi, \eta)}{\partial \xi^{d} \partial \eta^{e}} \frac{\partial^{f+g} \phi_{vj}(\xi, \eta)}{\partial \xi^{f} \partial \eta^{g}} \, \mathrm{d}\xi \, \mathrm{d}\eta \tag{19d}$$

$$\mathcal{I}_{viwj}^{defg} = \int\!\!\int_{A} \frac{\partial^{d+e} \phi_{vi}(\xi, \eta)}{\partial \xi^{d} \partial \eta^{e}} \frac{\partial^{f+g} \phi_{wj}(\xi, \eta)}{\partial \xi^{f} \partial \eta^{g}} \,\mathrm{d}\xi \,\mathrm{d}\eta \qquad (19e)$$

$$\mathcal{I}_{wiwj}^{defg} = \int\!\!\int_{A} \frac{\partial^{d+e} \phi_{wi}(\xi, \eta)}{\partial \xi^{d} \partial \eta^{e}} \frac{\partial^{f+g} \phi_{wj}(\xi, \eta)}{\partial \xi^{f} \partial \eta^{g}} \,\mathrm{d}\xi \,\mathrm{d}\eta \tag{19f}$$

and $i, j = 1, 2, \ldots, m$. The double integrations are symmetric in nature, that is, $\mathcal{I}_{\alpha i \beta j}^{defg} = \mathcal{I}_{\beta j \alpha i}^{fgde}$. The reference plate flexural rigidity is $D_0 = Q_{11}h^3/12 = E_{11}h^3/12(1 - \nu_{12}\nu_{21})$ and λ is the nondimensional frequency parameter that appears as the eigenvalue in Eq. (16).

As stated in Eqs. (14a–14c), the pb-2 shape functions $\phi_{\alpha i}$, ($\alpha = u, v,$ and w) are individually a set of admissible functions consisting the product of terms (indicated by i) of a mathematically complete two-dimensional orthogonally generated polynomials (p-2) and a basic function ($\phi_{\alpha b}$), i.e.,

$$\phi_{\alpha i}(\xi, \eta) = f_i(\xi, \eta)\phi_{\alpha b} - \sum_{j=1}^{i-1} \Xi_{\alpha ij}\phi_{\alpha j}$$
 (20)

where

$$\Xi_{\alpha ij} = \left[\iint_{A} f_{i}(\xi, \eta) \phi_{\alpha b} \phi_{\alpha j} \, d\xi \, d\eta \middle/ \iint_{A} \phi_{\alpha j}^{2} \, d\xi \, d\eta \right];$$

$$\alpha = u, v, \text{ and } w \quad (21a)$$

The summation $\sum_{i=1}^{m} f_i(\xi, \eta)$ forms a complete set of p-2 functions, and $\phi_{\alpha b}(\alpha = u, v \text{ and } w)$ are the basic functions defined by the products of the equations of the continuous piecewise boundary geometries of the plate planform, each of which is raised to an appropriate power.

Using the recurrence procedure, for instance, the pb-2 shape functions for the first six terms can be generated as

$$\phi_{\alpha 1}(x, y) = \phi_{\alpha b}(x, y) \tag{22a}$$

$$\phi_{\alpha 2}(x, y) = x\phi_{\alpha 1}(x, y) - \Xi_{\alpha 21}\phi_{\alpha 1}(x, y)$$
 (22b)

$$\phi_{\alpha 3}(x, y) = y \phi_{\alpha 1}(x, y) - \Xi_{\alpha 31} \phi_{\alpha 1}(x, y) - \Xi_{\alpha 32} \phi_{\alpha 2}(x, y)$$
 (22c)

$$\phi_{\alpha 4}(x, y) = x^2 \phi_{\alpha 1}(x, y) - \Xi_{\alpha 41} \phi_{\alpha 1}(x, y)$$

$$-\Xi_{\alpha 42}\phi_{\alpha 2}(x,y) - \Xi_{\alpha 43}\phi_{\alpha 3}(x,y)$$
 (22d)

$$\phi_{\alpha 5}(x, y) = xy\phi_{\alpha 1}(x, y) - \Xi_{\alpha 51}\phi_{\alpha 1}(x, y) - \Xi_{\alpha 52}\phi_{\alpha 2}(x, y)$$

$$-\Xi_{\alpha 53}\phi_{\alpha 3}(x,y) - \Xi_{\alpha 54}\phi_{\alpha 4}(x,y)$$
 (22e)

$$\phi_{\alpha 6}(x, y) = y^2 \phi_{\alpha 1}(x, y) - \Xi_{\alpha 61} \phi_{\alpha 1}(x, y) - \Xi_{\alpha 62} \phi_{\alpha 2}(x, y)$$

$$-\Xi_{\alpha 63}\phi_{\alpha 3}(x,y) - \Xi_{\alpha 64}\phi_{\alpha 4}(x,y) - \Xi_{\alpha 65}\phi_{\alpha 5}(x,y)$$
 (22f)

In the present approach, the basic functions for different boundary conditions are given by

$$\phi_{ub}(\xi,\eta) = \prod_{i=1}^{n_e} [\Gamma_i(\xi,\eta)]^{\gamma_{ui}}$$

$$\gamma_{ui} = \begin{cases} 0 & \text{free} \\ 1 & u\text{-deflection constrained} \end{cases}$$
 (23a)

$$\phi_{vb}(\xi,\eta) = \prod_{i=1}^{n_e} [\Gamma_i(\xi,\eta)]^{\gamma_{vi}}$$

$$\gamma_{ui} = \begin{cases} 0 & \text{free} \\ 1 & v\text{-deflection constrained} \end{cases}$$
 (23b)

$$\phi_{wb}(\xi,\eta) = \prod_{i=1}^{n_e} [\Gamma_i(\xi,\eta)]^{\gamma_{wi}}$$

$$\gamma_{wi} = \begin{cases} 0 & \text{free} \\ 1 & \text{simply supported} \\ 2 & \text{clamped} \end{cases}$$
 (23c)

where n_e is the number of supporting edges and Γ_i is the boundary expression of the *i*th supporting edge. In the present study, i=1 refers to the edge at x=0, and i=2,3,4 correspond to the subsequent edges going anticlockwise. For the arbitrarily supported trapezoidal plate under consideration (see Fig. 1), the basic functions in terms of nondimensional coordinates are

$$\phi_{\alpha b}(\xi, \eta) = \xi^{\gamma_{\alpha 1}} (\xi - 1)^{\gamma_{\alpha 3}} \left[\eta + \frac{1}{2} \left(\frac{c}{b} - 1 \right) \xi + \frac{1}{2} \right]^{\gamma_{\alpha 2}}$$

$$\times \left[\eta + \frac{1}{2} \left(1 - \frac{c}{b} \right) \xi - \frac{1}{2} \right]^{\gamma_{\alpha 4}}$$
(24)

where $\alpha = u$, v, and w and a/b is the aspect ratio, c/b (or c_r) is the chord ratio, $\gamma_{\alpha i}(\alpha = u, v \text{ and } w; i = 1, 2, 3, 4)$ are the powers of assigned values with either 0, 1, or 2 depending whether the normal, tangential, or the transverse deflection is constrained.

The mathematically complete two-dimensional polynomial $\sum_{i=1}^{m} f_i(\xi, \eta)$ on the other hand, can be expressed as

$$\sum_{i=1}^{m} f_i(\xi, \eta) = \sum_{q=0}^{p} \sum_{i=0}^{q} \xi^{q-i} \eta^i$$
 (25)

with m and p related by

$$m = [(p+1)(p+2)/2]$$
 (26)

where p is the degree of the complete set of two-dimensional polynomials to be employed.

IV. Numerical Studies

To demonstrate the applicability and numerical accuracy of the proposed method, a convergence study is carried out and the results are compared with available data. The material used in the present study is graphite/epoxy (G/E) where $E_{11}=138$ GPa, $E_{22}=8.96$ GPa, $G_{12}=7.1$ GPa, and $v_{12}=0.3$. The effects of angle of twist, fiber orientation and stacking sequences on the nondimensional vibration frequencies $\lambda=\omega ab\sqrt{(\rho h/D_o)}$ are investigated. For plates with varying aspects ratio (a/b), we may assume that the product ab

Table 1 Convergence of $\lambda = \omega ab\sqrt{(\rho h/D_0)}$ for the 8-ply pretwisted graphite/epoxy plate with a/b = 1.0, b/h = 100.0, and stacking sequence $(\beta, -\beta, \beta, -\beta, \beta, -\beta, \beta, -\beta)$

	ψ,	β, deg	p			Mode sequence number								
c_r	deg		и	v	\overline{w}	1	2	3	4	5	6	7	8	
			10	10	10	2.4902	14.925	30.663	34.185	40.680	45.105	58.862	64.589	
			10	10	11	2.4888	14.921	30.659	34.185	40.678	45.092	58.856	64.562	
			10	10	12	2.4878	14.917	30.658	34.184	40.677	45.085	58.825	64.550	
			10	10	13	2.4871	14.914	30.658	34.184	40.676	45.076	58.825	64.548	
			10	10	14	2.4865	14.912	30.657	34.184	40.676	45.070	58.824	64.547	
			10	10	15	2.4862	14.910	30.656	34.183	40.676	45.066	58.823	64.547	
			10	10	16	2.4859	14.908	30.655	34.183	40.676	45.062	58.823	64.547	
			10	10	17	2.4857	14.907	30.655	34.183	40.676	45.059	58.823	64.547	
1.0	30	30	10	10	18	2.4856	14.906	30.654	34.182	40.676	45.057	58.822	64.547	
			10	11	18	2.4856	14.906	30.649	34.179	40.674	45.056	58.814	64.526	
			10	12	18	2.4855	14.906	30.646	34.174	40.673	45.055	58.813	64.509	
			10	13	18	2.4855	14.906	30.644	34.171	40.672	45.055	58.813	64.502	
			10	14	18	2.4855	14.906	30.643	34.170	40.672	45.055	58.812	64.495	
			11	14	18	2.4854	14.906	30.641	34.168	40.671	45.050	58.807	64.483	
			12	14	18	2.4854	14.906	30.640	34.165	40.670	45.050	58.807	64.477	
			13	14	18	2.4854	14.906	30.639	34.164	40.670	45.049	58.806	64.474	
			14	14	18	2.4854	14.906	30.638	34.164	40.670	45.049	58.806	64.469	
			10	10	10	1.3273	6.9537	20.804	42.160	49.777	59.305	72.038	83.339	
			10	10	11	1.3269	6.9515	20.799	42.142	49.771	59.286	71.953	83.324	
			10	10	12	1.3267	6.9501	20.795	42.135	49.766	59.278	71.916	83.306	
			10	10	13	1.3266	6.9491	20.793	42.131	49.766	59.278	71.888	83.304	
			10	10	14	1.3265	6.9485	20.791	42.127	49.765	59.276	71.883	83.300	
			10	10	15	1.3264	6.9480	20.789	42.124	49.765	59.276	71.878	83.298	
			10	10	16	1.3264	6.9477	20.788	42.122	49.765	59.276	71.875	83.298	
			10	10	17	1.3264	6.9475	20.788	42.121	49.765	59.276	71.872	83.297	
0.5	45	60	10	10	18	1.3264	6.9474	20.787	42.120	49.765	59.276	71.870	83.297	
			10	11	18	1.3263	6.9473	20.787	42.119	49.764	59.271	71.802	83.279	
			10	12	18	1.3263	6.9473	20.787	42.119	49.763	59.268	71.799	83.276	
			10	13	18	1.3263	6.9473	20.787	42.118	49.763	59.267	71.797	83.272	
			10	14	18	1.3263	6.9473	20.787	42.118	49.762	59.267	71.797	83.270	
			11	14	18	1.3263	6.9472	20.786	42.107	49.760	59.266	71.781	83.251	
			12	14	18	1.3263	6.9472	20.786	42.106	49.758	59.265	71.762	83.246	
			13	14	18	1.3263	6.9472	20.786	42.105	49.757	59.264	71.757	83.244	
			14	14	18	1.3263	6.9472	20.786	42.105	49.757	59.264	71.755	83.242	

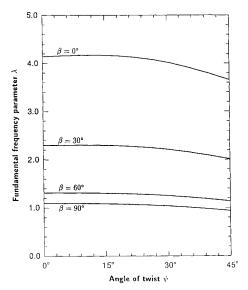


Fig. 3 Effects of angle of twist on the nondimensional fundamental frequency $\lambda = \omega ab\sqrt{(\rho h/D_0)}$ for the 2-ply graphite/epoxy plate with $a/b=1.0,\,b/h=100.0,\,c_r=0.5$, and stacking sequence $(\beta,-\beta)$.

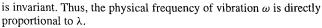


Table 1 shows the convergence of eigenvalues for the 8-ply pretwisted unsymmetrically laminated square plate with stacking sequence $(\beta, -\beta, \beta, -\beta, \beta, -\beta, \beta, -\beta)$. The degrees of polynomial for u, v, and w are increased to achieve the desired level of convergence. The convergence of eigenvalues follows a direct downward trend because the Ritz minimizing procedure always

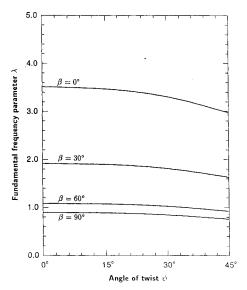


Fig. 4 Effects of angle of twist on the nondimensional fundamental frequency $\lambda = \omega ab\sqrt{(\rho h/D_0)}$ for the 2-ply graphite/epoxy plate with $a/b = 1.0, b/h = 100.0, c_r = 1.0$, and stacking sequence $(\beta, -\beta)$.

overestimates the stiffness of the plate which results in higher frequency parameters with respect to exact solutions. However, upperbound frequency parameters can be found by increasing the degrees of polynomial of the pb-2 shape functions. From Table 1, it is obvious that the respectively degrees of polynomial may not be the same but, in general degrees 14, 14, and 18 for u, v, and w (a determinant size of 430×430) are sufficient to reach an acceptable convergence up to four significant figures.

Table 2 Comparison of frequency parameter $\omega a^2 \sqrt{(\rho/E_{11}h^3)}$ for the pretwisted 3-ply graphite/epoxy plate with $a/b=1.0, c_r=1.0, b/h=100.0,$ $\psi=45$ deg, and stacking sequence $(\beta,-\beta,\beta)$

β,		Mode sequence number									
deg	Reference	1	2	3	4	5	6	7	8	9	10
0	Qatu and Leissa ¹²	0.8608	5.1012	12.764	14.449	15.861	16.347	21.273	25.315	26.535	27.149
	Present	0.86071	5.0989	12.634	14.257	15.614	16.303	21.140	24.166	25.673	26.470
15	Qatu and Leissa ¹²	0.8045	4.7551	12.950	14.121	15.335	16.204	22.142	27.126	27.803	28.343
	Present	0.80399	4.7465	12.725	13.992	15.086	15.917	21.920	24.690	26.968	27.531
30	Qatu and Leissa ¹²	0.6549	3.8350	11.708	11.967	14.012	15.750	22.133	26.077	27.522	28.092
	Present	0.65311	3.8219	11.599	11.827	13.849	15.328	21.672	24.052	25.019	25.690
45	Qatu and Leissa ¹²	0.4698	2.7296	8.6002	10.393	12.140	16.325	21.310	22.814	24.553	26.219
	Present	0.46664	2.7166	8.4729	10.283	11.995	15.465	17.887	20.955	22.440	24.308
60	Qatu and Leissa ¹²	0.3135	1.8384	5.9160	9.4600	13.645	17.099	18.990	19.603	22.953	25.397
	Present	0.31196	1.8289	5.8045	9.3802	10.562	11.949	17.060	18.721	20.105	22.558
75	Qatu and Leissa ¹²	0.2352	1.3984	4.5249	9.1080	9.6967	14.908	18.416	18.704	20.719	23.661
	Present	0.23485	1.3941	4.4454	9.0412	9.1208	9.6683	15.314	18.236	18.489	20.443
90	Qatu and Leissa ¹²	0.2192	1.3058	4.2192	9.1152	9.2419	12.747	17.889	18.888	19.675	20.771
	Present	0.21919	1.3031	4.1607	8.4707	9.0989	9.2623	14.285	17.738	18.805	19.624

Table 3 Frequency parameters $\lambda = \omega ab\sqrt{(\rho h/D_0)}$ for the cantilever pretwisted 2-ply graphite/epoxy plate with b/h = 100.0 and stacking sequence $(\beta, -\beta)$

	ψ,	β,			Mode sequence number									
a/b	deg	deg	c_r	1	2	3	4	5	6	7	8			
	0	30	0.5 1.0	2.2978 1.9143	7.5985 4.4762	12.387 10.294	21.915 12.176	21.932 16.496	32.910 22.297	40.983 26.567	43.481 33.588			
		60	0.5 1.0	1.3123 1.0818	6.7322 3.9421	7.1304 6.7189	18.143 13.047	19.230 14.198	28.694 19.122	33.214 26.084	37.387 26.150			
	15	30	0.5 1.0	2.2959 1.8925	12.316 11.650	25.361 16.948	30.687 19.270	33.906 24.809	38.726 33.290	50.939 34.317	53.675 40.415			
1.0		60	0.5 1.0	1.2995 1.0684	7.0076 6.5833	15.455 11.947	19.105 16.334	31.234 19.086	32.313 27.149	37.275 35.124	45.760 36.471			
	30	30	0.5 1.0	2.2119 1.8071	11.707 10.831	32.881 27.574	45.294 31.025	49.206 33.117	61.553 35.901	64.400 51.053	68.715 60.693			
		60	0.5 1.0	1.2495 1.0207	6.6395 6.1473	18.715 18.165	29.678 21.871	36.764 22.414	40.057 36.556	51.350 42.036	60.700 45.438			
	45	30	0.5 1.0	2.0113 1.6287	10.587 9.5815	31.590 30.611	63.043 39.931	66.569 43.547	72.013 50.045	83.777 62.489	95.596 71.320			
		60	0.5 1.0	1.1366 0.92020	6.0138 5.4491	17.956 17.397	36.030 30.766	48.135 31.097	51.288 35.667	60.570 56.224	69.717 60.111			
	0	30	0.5 1.0	1.1541 0.94985	6.2724 3.8774	6.6288 5.9065	16.924 12.647	17.639 15.338	30.795 17.071	31.812 24.640	33.010 26.689			
		60	0.5 1.0	0.65369 0.53561	3.5565 3.3431	6.1803 3.6113	9.5942 9.4072	15.769 11.232	18.669 18.490	26.879 20.035	30.812 25.404			
	15	30	0.5 1.0	1.1442 0.93904	6.1637 5.7830	15.750 12.575	16.825 16.247	32.673 18.072	32.875 27.990	34.636 32.625	48.397 36.235			
2.0		60	0.5 1.0	0.64596 0.52872	3.4908 3.2652	9.4899 6.9296	9.5255 9.3238	18.587 18.411	21.506 20.240	30.719 25.471	34.706 30.778			
	30	30	0.5 1.0	1.1005 0.89754	5.8382 5.3981	16.479 16.052	30.482 23.578	32.408 23.866	42.471 32.166	53.860 42.381	56.120 47.891			
		. 60	0.5 1.0	0.61954 0.50520	3.2977 3.0428	9.3181 9.0785	16.257 13.049	18.360 18.180	30.474 26.068	34.038 30.661	45.554 35.717			
	45	30	0.5 1.0	1.0011 0.80943	5.2875 4.7854	15.800 15.308	31.707 31.320	49.859 33.143	52.192 34.176	55.369 52.890	77.089 55.494			
		60	0.5 1.0	0.56342 0.45601	2.9807 2.7006	8.9291 8.6513	17.948 17.753	26.238 21.450	30.042 27.809	45.160 30.598	52.377 44.880			

Having established the numerical convergence, a comparison study with available frequency data¹² is carried out to check the reliability of the present approach. The comparison is presented in Table 2 using a 3-ply G/E pretwisted plate with square planform (a/b = 1.0) and $c_r = 1.0$, thickness ratio b/h = 100, and laminate stacking sequence $(\beta, -\beta, \beta)$. The frequency parameter in this case is $\omega a^2 \sqrt{(\rho/E_{11}h^3)}$. Excellent agreement between the results is achieved. It is also noticed that the present result is consistently lower than the results of Qatu and Leissa, 12

who also employed the Ritz method but with different shape functions. Keeping in mind that the Ritz method overestimates the stiffness and vibration frequencies and yields upper bound eigenvalues, the present results are more accurate because a total of 430 terms have been used with respect to 144 terms used by Qatu and Leissa. ¹²

The present method is subsequently employed to investigate the vibration behavior of cantilever trapezoidal graphite/epoxy plate with unsymmetric staking sequence. In this study, the thickness

Table 4 Frequency parameters $\lambda = \omega ab \sqrt{(\rho h/D_0)}$ for the cantilever pretwisted 4-ply graphite/epoxy plate with b/h = 100.0 and stacking sequence $(-\beta, \beta, -\beta, \beta)$

	ψ ,	β,				N	Iode sequen	ce number			
a/b	deg	deg	c_r	1	2	3	4	5	6	7	8
	0	30	0.5 1.0	2.9867 2.5041	10.124 6.0253	15.834 12.757	27.584 16.136	28.896 21.526	42.994 27.148	53.826 35.735	56.253 43.493
		60	0.5 1.0	1.4706 1.2180	7.8924 5.2670	8.9616 7.4354	21.568 17.029	23.735 18.176	37.984 22.285	42.499 32.636	42.672 35.212
	15	30	0.5 1.0	2.9838 2.4745	15.959 15.132	27.772 18.524	35.432 21.196	42.287 28.555	44.111 37.960	62.799 43.508	63.206 47.389
1.0		60	0.5 1.0	1.4603 1.2058	7.7882 7.3406	16.631 12.879	21.465 19.312	35.947 22.585	40.079 31.234	42.984 41.401	55.017 43.603
	30	30	0.5 1.0	2.8835 2.3627	15.360 14.271	42.724 29.925	50.690 33.364	54.394 40.495	64.955 43.061	78.472 58.756	83.490 63.794
		60	0.5 1.0	1.4121 1.1566	7.4384 6.9410	21.087 20.408	30.557 24.253	41.655 25.732	47.617 42.017	58.940 47.772	69.065 53.090
	45	30	0.5 1.0	2.6273 2.1298	13.981 12.688	41.560 39.705	74.276 42.608	78.044 47.203	83.866 55.807	91.732 78.978	104.45 83.167
		60	0.5 1.0	1.2922 1.0467	6.8017 6.2045	20.331 19.806	41.136 33.929	49.364 35.826	57.524 41.060	69.873 59.001	82.593 69.418
	0	30	0.5 1.0	1.4750 1.2216	7.9151 5.2720	8.9699 7.4566	21.630 17.052	23.765 18.158	37.944 22.332	42.572 32.704	42.781 35.208
		60	0.5 1.0	0.71503 0.58882	3.8626 3.6459	8.3671 4.8993	10.533 10.402	20.735 15.092	21.180 20.665	34.514 26.457	35.680 32.417
	15	30	0.5 1.0	1.4635 1.2086	7.8120 7.3623	17.013 13.042	21.516 19.404	35.933 22.684	40.311 30.926	43.139 41.587	53.845 43.117
2.0		60	0.5 1.0	0.70753 0.58211	3.7961 3.5685	10.467 7.7295	11.119 10.328	20.670 20.619	26.064 23.135	34.441 32.372	42.706 36.022
		30	0.5 1.0	1.4148 1.1592	7.4626 6.9624	21.138 20.475	31.551 24.508	41.805 26.163	48.388 42.112	58.997 48.275	69.468 53.584
		60	0.5 1.0	0.68136 0.55858	3.5942 3.3398	10.258 10.093	17.395 13.629	20.457 20.443	34.214 32.310	37.843 36.228	51.450 39.580
	45	30	0.5 1.0	1.2947 1.0490	6.8232 6.2235	20.386 19.860	41.256 34.826	51.478 36.059	59.185 41.174	70.210 61.975	82.890 69.659
		60	0.5 1.0	0.62422 0.50759	3.2609 2.9822	9.8639 9.6657	20.056 20.068	27.099 22.194	33.811 32.601	51.107 36.900	56.426 51.075

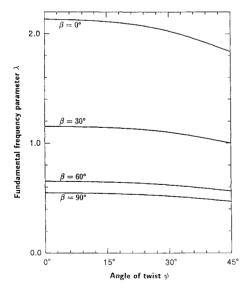


Fig. 5 Effects of angle of twist on the nondimensional fundamental frequency $\lambda = \omega ab\sqrt{(\rho h/D_0)}$ for the 2-ply graphite/epoxy plate with $a/b = 2.0, b/h = 100.0, c_r = 0.5$, and stacking sequence $(\beta, -\beta)$.

ratio b/h is fixed at 100.0. A set of data covering wide ranges of plate configurations are presented in Tables 3–5 corresponding to 2-ply, 4-ply, and 8-ply laminates. The angle of twist ψ varies from 0 (untwisted) to 45 deg whereas the angle of fiber orientation β changes from 30 to 60 deg.

It is observed in Table 3 that λ for a 2-ply square plate [a/b = 1.0] and stacking sequence $(\beta, -\beta)$] decreases when the chord ratio c_r

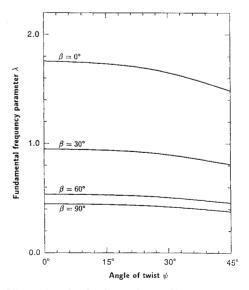


Fig. 6 Effects of angle of twist on the nondimensional fundamental frequency $\lambda = \omega ab\sqrt{(\rho h/D_0)}$ for the 2-ply graphite/epoxy plate with $a/b = 2.0, b/h = 100.0, c_r = 1.0$, and stacking sequence $(\beta - , \beta)$.

is increased from 0.5 to 1.0. It also generally decreases when β is increased. Similar facts are also noticed for a/b=2.0. In this table, the highest fundamental λ corresponds to $\beta=30$ deg and $c_r=0.5$ for a fixed angle of twist. The effects of aspect ratio can be examined in Tables 3–5. Assuming constant ab as explained earlier, increasing a/b renders lower λ and, thus, lower physical frequency ω because a more slender plate has lower structural stiffness.

1048

Table 5 Frequency parameters $\lambda = \omega ab\sqrt{(\rho h/D_o)}$ for the cantilever pretwisted 8-ply graphite/epoxy plate with a/b = 1.0, b/h = 100.0, and stacking sequence $(\beta, -\beta, \beta, -\beta, \beta, -\beta, \beta, -\beta)$

	ψ,	β,				M	ode sequence	number			
a/b	deg	deg	c_r	1	2	3	4	5	6	7	8
	0	30	0.5 1.0	3.1328 2.6280	10.658 6.3513	16.552 13.289	28.798 16.965	30.353 22.539	45.144 28.251	56.519 37.659	58.515 45.438
		60	0.5 1.0	1.5057 1.2478	8.0566 5.5468	9.4337 7.5905	22.084 17.877	24.923 18.913	39.836 23.072	43.963 34.055	44.485 37.098
	15	30	0.5 1.0	3.1346 2.6003	16.682 15.811	27.680 18.922	35.995 21.695	43.605 29.078	46.327 38.794	65.509 45.463	65.726 48.978
1.0		60	0.5 1.0	1.4949 1.2354	7.9454 7.4894	16.965 12.924	21.959 19.919	36.556 23.464	41.696 31.585	44.503 42.714	55.884 44.741
	30	30	0.5 1.0	3.0338 2.4854	16.060 14.906	44.596 30.638	50.152 34.164	54.688 40.670	66.235 45.049	81.113 58.806	86.089 64.469
		60	0.5 1.0	1.4469 1.1864	7.5894 7.0894	21.561 20.850	30.852 24.155	42.676 26.580	49.543 43.099	59.052 49.372	70.992 54.584
	45	30	0.5 1.0	2.7672 2.2424	14.614 13.246	43.483 41.409	73.401 43.483	77.940 48.503	87.580 56.069	92.782 78.210	107.05 86.761
		60	0.5 1.0	1.3263 1.0750	6.9472 6.3473	20.786 20.276	42.105 34.469	49.757 35.914	59.264 42.118	71.755 61.466	83.242 71.320
	0	30	0.5 1.0	1.5410 1.2773	8.2441 5.5651	9.4622 7.7654	22.591 17.975	25.050 18.784	39.467 23.436	44.825 34.372	44.828 37.023
		60	0.5 1.0	0.72780 0.59990	3.9257 3.7086	8.8277 5.1704	10.733 10.617	21.185 15.906	22.322 21.147	35.331 27.819	37.544 33.598
	15	30	0.5 1.0	1.5310 1.2653	8.1330 7.6688	17.298 13.286	22.473 20.005	37.293 23.722	41.685 31.905	45.116 43.374	56.933 45.331
2.0		60	0.5 1.0	0.72015 0.59307	3.8568 3.6285	10.662 7.8841	11.478 10.536	21.107 21.086	26.956 23.538	35.235 33.439	44.038 37.390
	30	30	0.5 1.0	1.4824 1.2151	7.7731 7.2613	22.075 21.333	31.707 24.943	43.603 26.796	49.604 44.114	60.521 48.838	72.427 54.878
		60	0.5 1.0	0.69384 0.56941	3.6511 3.3959	10.446 10.293	17.656 13.694	20.878 20.899	34.982 33.251	38.442 37.587	52.645 39.524
	45	30	0.5 1.0	1.3586 1.1008	7.1169 6.4981	21.287 20.764	43.100 35.322	51.588 36.953	60.062 43.099	73.445 61.692	85.073 72.966
		60	0.5 1.0	0.63645 0.51812	3.3129 3.0341	10.042 9.8612	20.462 20.521	27.289 22.196	34.554 33.413	52.285 38.287	56.706 52.253

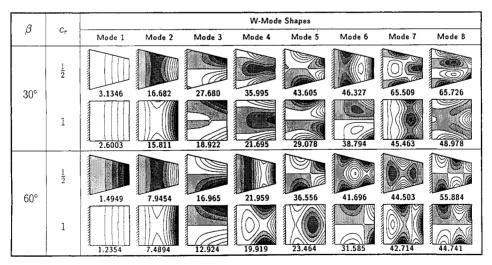


Fig. 7 Effects of angle of lamination and chord ratio on $\lambda = \omega ab\sqrt{(\rho h/D_0)}$ and the transverse vibration mode shapes for the 8-ply graphite/epoxy plate with a/b = 1.0, b/h = 100.0, $\psi = 15$ deg, and stacking sequence $(\beta, -\beta, \beta, -\beta, \beta, -\beta, \beta, -\beta)$.

The effects of number of plies on λ can be observed by comparing corresponding values in Tables 3–5 for 2-ply, 4-ply, and 8-ply laminates. It is evident that the frequencies are higher for laminates with more plies. For instance, the fundamental λ increases from 2.0113 for $a/b=1.0, \psi=45$ deg, $\beta=30$ deg, and $c_r=0.5$ as shown in Table 3 (2 ply) to 2.6273 in Table 4 (4 ply) and 2.7672 in Table 5 (8 ply). Therefore, the structural stiffness of a pretwisted plate can be

increased by having more laminations since the physical frequency ω is directly proportional λ .

The fundamental λ varies as the angle of twist ψ is gradually increased. By observing data in Tables 3–5, the definite ψ corresponding to maximum fundamental λ cannot be determined. This information can be obtained from Figs. 3–6, which correspond to a 2-ply graphite-epoxy plate with b/h=100.0. The aspect ratio

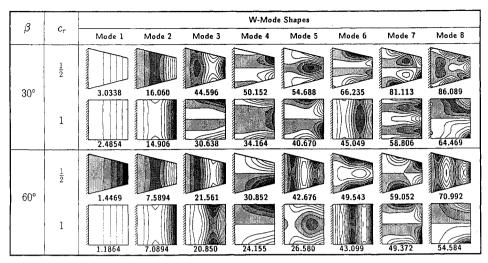


Fig. 8 Effects of angle of lamination and chord ratio on $\lambda = \omega ab\sqrt{(\rho h/D_0)}$ and the transverse vibration mode shapes for the 8-ply graphite/epoxy plate with a/b = 1.0, b/h = 100.0, $\psi = 30$ deg, and stacking sequence $(\beta, -\beta, \beta, -\beta, \beta, -\beta, \beta, -\beta)$.

β		W-Mode Shapes										
<u>β</u>	C_r	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7	Mode 8			
30°	$\frac{1}{2}$	1.5310	8.1330	17.298	22.473	37.293	41.685	45.116	56.933			
00	1	1.2653	7.6688	13.286	20.005	23.722	31.905	43.374	45.331			
60°	$\frac{1}{2}$	0.7202	3.8568	10.662	11.478	21.107	26.956	35.235	44.038			
	1	0.5931	3.6285	7.8841	10.536	21.086	23.538	33.439	37.390			

Fig. 9 Effects of angle of lamination and chord ratio on $\lambda = \omega ab\sqrt{(\rho h/D_0)}$ and the transverse vibration mode shapes for the 8-ply graphite/epoxy plate with a/b = 2.0, b/h = 100.0, $\psi = 15$ deg, and stacking sequence $(\beta, -\beta, \beta, -\beta, \beta, -\beta, \beta, -\beta, \beta, -\beta)$.

0		W-Mode Shapes									
β	C_T	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7	Mode 8		
30°	$\frac{1}{2}$	1.4824	7.7731	22.075	31.707	43.603	49.604	60.521	72.427		
	1	1.2151	7.2613	21.333	24.943	26.796	44.114	48.838	54.878		
60°	$\frac{1}{2}$	0.6938	3.6511	10.446	17.656	20.878	34.982	38.442	52.645		
	1	0.5694	3.3959	10.293	13.694	20.899	33.251	37.587	39.524		

Fig. 10 Effects of angle of lamination and chord ratio on $\lambda = \omega ab\sqrt{(\rho h/D_0)}$ and the transverse vibration mode shapes for the 8-ply graphite/epoxy plate with a/b = 2.0, b/h = 100.0, $\psi = 30$ deg, and stacking sequence $(\beta, -\beta, \beta, -\beta, \beta, -\beta, \beta, -\beta)$.

a/b changes from 1.0 (Figs. 3 and 4) to 2.0 (Figs. 5 and 6), whereas the chord ratio c_r varies from 0.5 to 1.0. In Fig. 3 (a/b=1.0 and $c_r=0.5$), the maximum λ occurs in the range of $10<\psi<20$ deg for $\beta=0$ deg and occurs at $\psi=0$ deg (untwisted plate) for $\beta=30$, 60, and 90 deg. For a/b=1.0 and $c_r=1.0$ as shown in Fig. 4, the untwisted plate obviously provides the highest fundamental λ for all values of β . For rectangular plates (Figs. 5 and 6), the maximum fundamental λ again occurs when $\psi=0$ deg regardless of the chord ratio.

Figures 7–10 illustrate the effects of aspect ratio, chord ratio, angle of twist, and fiber orientation upon the transverse vibration mode shapes for the 8-ply laminates. These plates, however, also have inplane vibrations in the x and y directions which are not shown here. The shaded contour lines show the regions with negative displacement amplitude and the unshaded contour line otherwise. The lines of demarcation are the nodal lines having zero displacement amplitude. From these figures, it is observed that the first two modes are the spanwise bending modes having 0 and 1 nodal line, respectively, for

these cantilever pretwisted laminated plates. The number of nodal lines increases and the vibration modes become more complicated for the higher modes.

V. Conclusions

In this paper, an approximate method based on the extremum energy principle has been developed to study the vibratory characteristics of pretwisted cantilever laminated plate of trapezoidal planform. The Ritz minimization procedure has been employed with a set of orthogonally generated mathematically complete two-dimensional pb-2 shape functions as the admissible displacement amplitude functions. The kinematic boundary conditions of the structure are satisfied at the outset because the boundary expressions and constraints have been formulated as the intrinsic components of the pb-2 shape functions.

The numerical convergence of this method has been carefully verified through a convergence study. It has been shown that 14 and 18 deg of polynomial for the in-plane (u and v) and transverse (w) deflections were sufficient to provide sound numerical frequencies. The effects of various geometric properties of the graphite/epoxy laminated plate have been thoroughly studied. Increases in the aspect ratio, chord ratio, and angle of lamination decrease the vibration frequencies monotonically; however, the frequency increases for laminates with more plies. In general, the highest fundamental frequencies correspond to untwisted plates except for the case of a square plate with zero degree of lamination and chord ratio 0.5 where the maximum fundamental frequency occurs in between 10 and 20 deg. The effects of plate geometric parameters on the vibration mode shapes have been illustrated in contour mode shapes.

References

¹Carnegie, W., "Vibrations of Pretwisted Cantilever Blading," *Proceedings of the Institution of Mechanical Engineers*, Vol. 173, No. 12, 1959, pp. 343–374.

²Carnegie, W., "Vibrations of Pretwisted Cantilever Blading: An Addi-

tional Effect due to Torsion," Journal of Mechanical Engineering Science, Vol. 6, No. 2, 1964, pp. 105–109.

³Houbolt, J. C., and Brooks, G. W., "Differential Equations of Motion for Combined Flapwise Bending, Chordwise Bending and Torsion of Twisted Nonuniform Rotor Blades," NACA Rept. 1346, 1958.

⁴Montoya, J., "Coupled Bending and Torsional Vibrations in a Twisted Rotating Blade," *Brown Boveri Review*, Vol. 53, No. 3, 1966, pp. 216–230.

⁵Reissner, E., and Washizu, K., "On Torsional Vibrations of a Beam with a Small Amount of Pretwist," *Journal of the Japan Society of Aerospace Engineering*, Vol. 5, No. 47, 1958, pp. 330–335.

⁶Bridle, M. D. J., "Vibration of thick plates and shells," Ph.D. Thesis, Univ. of Nottingham, England, UK, 1973.

⁷Gupta, K., and Rao, J. S., "Torsional Vibration of Pretwisted Cantilever Plates," *Journal of Mechanical Design*, Vol. 100, July, 1978, pp. 528–534.

⁸Leissa, A. W., MacBain, J. C., and Kielb, R. E., "Vibrations of Twisted Cantilevered Plates—Summary of Previous and Current Studies," *Journal of Sound and Vibration*, Vol. 96, No. 2, 1984, pp. 159–173.

⁹Kielb, R. E., Leissa, A. W., and MacBain, J. C., "Vibrations of Twisted Cantilevered Plates—A Comparison of Theoretical Results," *International Journal for Numerical Methods in Engineering*, Vol. 21, No. 8, 1985, pp. 1365–1380.

¹⁰MacBain, J. C., Kielb, R. E., and Leissa, A. W., "Vibrations of Twisted Cantilevered Plates—Experimental Investigation," *Journal of Engineering for Gas Turbines and Power*, Vol. 107, No. 1, 1985, pp. 187–196.

¹¹Chamis, C. C., "Vibration Characteristics of Composite Fan Blades and Comparisons with Measured Data," *Journal of Aircraft*, Vol. 14, No. 7, 1977, pp. 644–647.

¹²Qatu, M. S., and Leissa, A. W., "Vibration Studies for Laminated Composite Twisted Cantilevered Plates," *International Journal of Mechanical Sciences*, Vol. 33, No. 11, 1991, pp. 927–940.

¹³Liew, K. M., and Lim, C. W., "Vibratory Characteristics of Cantilevered Rectangular Shallow Shells of Variable Thickness," *AIAA Journal*, Vol. 32, No. 2, 1994, pp. 387–396.

¹⁴Liew, K. M., and Lim, C. W., "A Global Continuum Ritz Formulation for Flexural Vibration of Pretwisted Trapezoidal Plates with One Edge Built In," *Computer Methods in Applied Mechanics and Engineering*, Vol. 114, 1994, pp. 233–247.

¹⁵Leissa, A. W., and Qatu, M. S., "Equations of Elastic Deformation of Laminated Composite Shallow Shells," *Journal of Applied Mechanics*, Vol. 58, March 1991, pp. 181–188.